Cathodic protection (CP) is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell.[1] A simple method of protection connects the metal to be protected to a more easily corroded “sacrificial metal” to act as the anode. The sacrificial metal then corrodes instead of the protected metal. For structures such as long pipelines, where passive galvanic cathodic protection is not adequate, an external DC electrical power source is used to provide sufficient current.

Cathodic protection systems protect a wide range of metallic structures in various environments. Common applications are: steel water or fuel pipelines and steel storage tanks such as home water heaters; steel pier piles; ship and boat hulls; offshore oil platforms and onshore oil well casings; offshore wind farm foundations and metal reinforcement bars in concrete buildings and structures. Another common application is in galvanized steel, in which a sacrificial coating of zinc on steel parts protects them from rust.

Cathodic protection can, in some cases, prevent stress corrosion cracking.

History[edit]

Cathodic protection was first described by Sir Humphry Davy in a series of papers presented to the Royal Society[2] in London in 1824. The first application was to the HMS Samarang [3] in 1824. Sacrificial anodes made from iron attached to the copper sheath of the hull below the waterline dramatically reduced the corrosion rate of the copper. However, a side effect of the cathodic protection was to increase marine growth. Copper, when corroding, releases copper ions which have an anti-fouling effect. Since excess marine growth affected the performance of the ship, the Royal Navy decided that it was better to allow the copper to corrode and have the benefit of reduced marine growth, so cathodic protection was not used further.

Davy was assisted in his experiments by his pupil Michael Faraday, who continued his research after Davy’s death. In 1834, Faraday discovered the quantitative connection between corrosion weight loss and electric current and thus laid the foundation for the future application of cathodic protection.[4]

Thomas Edison experimented with impressed current cathodic protection on ships in 1890, but was unsuccessful due to the lack of a suitable current source and anode materials. It would be 100 years after Davy’s experiment before cathodic protection was used widely on oil pipelines in the United States[5] — cathodic protection was applied to steel gas pipelines beginning in 1928[6] and more widely in the 1930s.[7]

Types[edit]

Galvanic sacrificial anode attached to the hull of a ship, showing corrosion.

Galvanic[edit]

In the application of passive cathodic protection, a galvanic anode, a piece of a more electrochemically “active” metal, is attached to the vulnerable metal surface where it is exposed to an electrolyte. Galvanic anodes are selected because they have a more “active” voltage (more negative electrode potential) than the metal of the target structure (typically steel). For effective cathodic protection, the potential of the steel surface is polarized (pushed) more negative until the surface has a uniform potential. At that stage, the driving force for the corrosion reaction with the protected surface is removed. The galvanic anode continues to corrode, consuming the anode material until eventually it must be replaced. Polarization of the target structure is caused by the electron flow from the anode to the cathode, so the two metals must have a good electrically conductive contact. The driving force for the cathodic protection current is the difference in electrode potential between the anode and the cathode.[8]

Galvanic or sacrificial anodes are made in various shapes and sizes using alloys of zinc, magnesium and aluminium. ASTM International publishes standards on the composition and manufacturing of galvanic anodes.[9][10]

In order for galvanic cathodic protection to work, the anode must possess a lower (that is, more negative) electrode potential than that of the cathode (the target structure to be protected). The table below shows a simplifiedgalvanic series which is used to select the anode metal.[11] The anode must be chosen from a material that is lower on the list than the material to be protected.

Metal Potential with respect to a Cu:CuSO4reference electrode in neutral pH environment (volts)
Carbon, Graphite, Coke +0.3
Platinum 0 to -0.1
Mill scale on Steel -0.2
High Silicon Cast Iron -0.2
Copper, brass, bronze -0.2
Mild steel in concrete -0.2
Lead -0.5
Cast iron (not graphitized) -0.5
Mild steel (rusted) -0.2 to -0.5
Mild steel (clean) -0.5 to -0.8
Commercially pure aluminium -0.8
Aluminium alloy (5% zinc) -1.05
Zinc -1.1
Magnesium Alloy (6% Al, 3% Zn, 0.15% Mn) -1.6
Commercially Pure Magnesium -1.75

Impressed current systems[edit]

cathodic protection

Simple impressed current cathodic protection system. A source of DCelectric current is used to help drive the protective electrochemical reaction.

For larger structures, or where